Dette systemet er ikke lenger i aktivt bruk og har blitt erstattet av Panopto i løpet av sommeren 2023. Les mer her.
Dato Tittel Foreleser Emne
Tommelnegl 9. oktober 2017
Kl. 13.15
255 min
Lille Eureka, 1/3 Eureka
The Digital Forensics Process and Forensic Readiness
Extra 30 minutes added to end of session, in case of over-runs
Carl Stuart Leichter IMT 4114 Introduction to Digital Forensics
Tommelnegl 4. oktober 2017
Kl. 16.15
240 min
A153
Lab day 2 Carl Stuart Leichter IMT4114 Introduction to Digital Forensics
Tommelnegl 6. oktober 2017
Kl. 14.15
240 min
A153
Lab day 4 Carl Stuart Leichter IMT4114 Introduction to Digital Forensics
Tommelnegl 4. september 2017
Kl. 13.15
225 min
Lille Eureka, 1/3 Eureka
IMT4114 first lecture
Introduction to digital Forensics
Carl Stuart Leichter IMT4114 Introduction to Digital Forensics
Tommelnegl 23. oktober 2017
Kl. 13.15
255 min
D101
Mobile/Embedded and Internet Forensics
30 Minutes extra time added to recording duration, in case of over-runs.
Carl Stuart Leichter IMT4114 Introduction to Digital Forensics
Tommelnegl 15. september 2017
Kl. 12.12
55 min
A146
Big Data Analytics: Topic Modeling for Digital Forensics Investigations and Cyber Threat Intelligence
“Big Data Analytics” has become a high priority topic in Cyber Research and in the field of Cyber Security, Big Data represents a very serious problem. In the domain of Digital Forensics Investigations (DFI), the sheer volume of data to be analyzed impedes police operations that require timely reporting of DFI results to support active criminal investigations in the field. In the domain of Cyber Threat Intelligence (CTI), a rapid assessment of the available threat data is required to enable dissemination of actionable intelligence in a timely manner. Topic Modeling is an unsupervised machine learning method for analyzing large bodies of text data and producing estimates of the topics under discussion in them. To gain some insight into how it works, we reviewed some of the underlying principles of Topic Modeling. Then, I presented experimental results that show how Topic Modeling would work in the specific domains of DFI (using the Enron data set) and CTI (using posts scraped from an online hacker forum).
Carl Stuart Leichter NISseminar